
Plan Execution for Autonomous Spacecraft �

Barney Pell y Erann Gat x Ron Keesing yNicola Muscettola z Ben Smith x

Abstract

The New Millennium Remote Agent (NMRA) will
be the �rst AI system to control an actual space-
craft. The spacecraft domain raises a number
of challenges for planning and execution, ranging
from extended agency and long-term planning to
dynamic recoveries and robust concurrent execu-
tion, all in the presence of tight real-time dead-
lines, changing goals, scarce resource constraints,
and a wide variety of possible failures. We believe
NMRA is the �rst system to integrate closed-loop
planning and execution of concurrent temporal
plans, and the �rst autonomous system that will
be able to achieve a sustained multi-stage multi-
year mission without communication or guidance
from earth.

1 Introduction
We are developing the �rst AI system to control an
actual spacecraft. The mission, Deep Space One
(DS-1) is the �rst mission in NASA's New Millen-
nium Program (NMP), an aggressive series of tech-
nology demonstrations intended to push Space Ex-
ploration into the twenty-�rst century. DS-1 will
launch in mid-1998 and will navigate and 
y by
asteroids and comets, taking pictures and sending
back information to scientists back on Earth. One
key technology to be demonstrated is spacecraft au-
tonomy, including onboard planning and plan exe-
cutution. The spacecraft will spend long periods of
time without the possibility of communication with
ground operations sta�, and will in fact plan when

�This paper appears in the working notes of the
AAAI Fall Symposium on Plan Execution

zRecom Technologies, NASA Ames Research Cen-
ter, MS 269/2, Mo�ett Field, CA 94035.

yCaelum Research, NASA Ames Research Center,
MS 269/2, Mo�ett Field, CA 94035.

xJet Propulsion Laboratory, California Institute of
Technology, 4800 Oak Grove Drive, Pasadena, CA
91109.

it needs to communicate back to Earth. It must
maintain its safety and achieve high-level goals,
when possible, even in the presence of hardware
faults and other unexpected events.
This paper describes our approach to plan exe-

cution in the context of spacecraft autonomy. Our
approach is being implemented as part of the New
Millennium Remote Agent (NMRA) architecture
(Pell et al. 1996). The paper is organized as fol-
lows. Section 2 discusses the spacecraft domain and
requirements which in
uence our design. Section 3
describes our approach to planning, execution, and
robustness, and illustrates the top-level loop of our
system. Section 4 addresses the issues involved in
generating plans to support robust execution, and
Section 5 shows how such plans are executed. We
then consider our work in the context of related
work and conclude.

2 Domain and Requirements

The autonomous spacecraft domain presents a
number of challenges for planning and plan exe-
cution. Many devices and systems must be con-
trolled, leading to multiple threads of complex ac-
tivity. These concurrent processes must be coordi-
nated to control for negative interactions, such as
the vibrations of the thruster system violating the
stability requirements of the camera. In addition,
activities may have precise real-time constraints,
such as taking a picture of an asteroid during a
narrow window of observability.
The planner and plan execution system must rea-

son about and interact with external agents and
processes, such as the on-board navigation system
and the attitude controller. These external agents
can provide some information at plan time, and
achieve tasks and provide more information at run-
time, but are never fully controllable or predictable.
For example, the attitude controller can provide es-
timates of turn durations at plan time. However,



the completion of turns during execution is not con-
trollable and can only be observed. Plans must ex-
press compatibilities among activities, and the plan
execution system must synchronize these activities
at run-time.
Virtually all resources on spacecraft are limited

and carefully budgeted, and the system must en-
sure that they are allocated e�ectively to goal-
achievement. Some resources, like solar panel-
generated power, are constant but limited. Oth-
ers, such as total propellant, are �nite and must
be budgeted across the entire mission. The planner
reasons about resource usage in generating plans,
but because of run-time uncertainty the resource
contraints must also be enforced as part of plan
execution.
In addition, planning and the information neces-

sary to generate plans can also be considered lim-
ited resources. Thus plan execution must be robust
in the face of a wide variety of hardware faults and
delays.
The spacecraft domain requires tracking of com-

plex goals through time, such as the achievement
of a certain amount of thrusting over the course of
several months. Thus the execution system must
communicate the outcomes of commanded activi-
ties that a�ect these goals to the planning system,
and the planner must use this information to up-
date current goals and in
uence future planning.

3 Approach

Our approach clearly separates an extensive, delib-
erative planning phase from the reactive execution
phase. The characteristics of the resulting archi-
tecture stem from the challenge of solving the com-
plex technical problems posed by the domainwithin
the compressed implementation timeline imposed
by the mission.
Our architecture follows the approach of infre-

quently generating plans over relatively extended
periods of time.
Because on-board resources are severely limited

the planner needs to generate courses of action that
achieve high quality execution and cover extended
periods of time. The overall goal of \mission suc-
cess" depends on the achievement of several indi-
vidual goals imposed on the mission from several in-
dependent sources (e.g., take pictures with a given
frequency to perform optical navigation, commu-
nicate to ground at given times). However these
goals cannot usually be achieved with the level of
satisfaction required by each source (e.g., required
duration of a communication activity). The plan-
ner always has to trade o� the level of goal satisfac-
tion with respect to the long term \mission success"

and within the resource limitations. Degradation or
even rejection of individual goals is a likely outcome
of planning. The above trade-o�s can be reasonably
evaluated only by considering extended periods of
plan execution.

The length of the horizon covered by each plan
needs to be carefully dimensioned to take into
account the e�ects of execution uncertainty. To
achieve some planning goals (e.g., accumulation of
thrust) the planner relies on predictions of the be-
havior of the spacecraft (e.g., nominal schedules of
engine activation provided by the on-board naviga-
tor). However the need to achieve other, indepen-
dent goals is not included in the assumptions under
which the prediction is generated. To be completely
accurate the prediction should take into account the
detailed activities (e.g., when the engine will be ac-
tually switched on or o�) and these are only known
in the �nal plan . In our approach the predictive
models are updated at periodic times which corre-
spond with the end of each scheduling horizon.

We choose to plan at infrequent intervals because
of the limited on-board processing capabilities of
the spacecraft. The planner must share the CPU
with other critical computation tasks such as the
execution engine, the real-time control loops and
the fault detection, isolation and recovery system.
While the planner generates a plan, the spacecraft
must continue to operate. More importantly, the
plan often contains critical tasks whose execution
cannot be interrupted in order to install newly gen-
erated plans. In our approach the generation of a
plan is explicitly represented in the plan as a task.
When the executive reaches this task in the cur-
rent planning horizon, it asks the planner to gener-
ate a plan for the next scheduling horizon while it
continues to execute the activities remaining in the
current plan. In nominal condition the planning
activity is guaranteed to generate a plan within its
allocated duration. When the executive reaches the
end of the current horizon the plan for the next
horizon will be ready and the executive will be able
to install it and to seamlessly continue execution.

Ideally, we would like to have the planner repre-
sent the spacecraft at the same level of detail as the
executive. This approach is taken by (Bresina et
al. 1996), and by (Levinson 1994). The approach,
when feasible, has a number of bene�ts. First, it
enables the planner to simulate the detailed func-
tioning of the executive under various conditions
of uncertainty, and to produce a plan which has
contingencies (branches) providing quick responses
for important execution outcomes. Second, it en-
ables one language rather than two for expressing
action knowledge, which simpli�es knowledge en-



gineering and helps maintain consistency of inter-
faces. Third, it enables the planner to monitor ex-
ecution in progress and project the likely course of
actions, and then provide plan re�nements which
can be patched directly into the currently execut-
ing plan.
Unfortunately, in our domain this single repre-

sentation approach is not really practical because
the complexity of interactions at the detailed level
of execution would make planning at this level com-
binatorially intractable.
To simplify the job of the planner, we have found

it necessary to make the planner operate on a more
abstract model of the domain. Examples of ab-
stractions we use include:

� hiding details of subsystem interactions con-
trolled by the executive

� merging a set of detailed component states into
abstract states

� not modeling certain subsystems

� using conservative resource and timing estimates

Some examples are these abstractions are pro-
vided in Section 6.
These techniques successfully simplify the combi-

natorial challenges to the point where we can actu-
ally 
y a planner on-board the spacecraft and have
it solve real problems. However, this does create
an abstraction boundary between the action mod-
els used by the planner and the executive. This
language boundary has several consequences which
impact our design. One important consequence is
that the planner can no longer model or predict in-
termediate execution states. Since the executive is
managing multiple concurrent activities at a level
of detail below the planner's visibility, this makes
it di�cult to provide a well-de�ned initial state as
input to the infrequent planning process. If the ex-
ecutive performed all kind of activities while plan-
ning was occuring, it is quite possible that the plan
returned is not applicable as the initial conditions
are no longer valid at the time the plan is to be
executed.
We address the problem of generating initial

states for the next planning round di�erently de-
pending on whether the currently executing plan is
succeeding or has failed.
If the currently executing plan is proceeding as

planned, it will include an activity to plan for the
next horizon. At this point, we can send to the
planner the current plan in its entirety, with an-
notations for the decisions that were made so far
in executing it. The current plan serves as its own
prediction of the future at the level of abstraction
required by the planner. Thus, all the planner has

to do is extend the plan to address the goals of
the next planning horizon and return the result to
the executive. This requires the executive be able
to merge in the extended plan within its current
representation of the existing plan. The net result
is that, from the executive's perspective, execut-
ing multiple chained plans is virtually the same as
executing one long plan. This has the useful con-
sequence that it enables the executive to engage
in activities which span multiple planning horizons
(such as a 3-month long engine burn) without in-
terrupting them.
In the event of plan failure, the executive knows

how to enter a stable state (called a standby mode)
prior to invoking the planner, and it knows how
to express that standby mode in the abstract lan-
guage understood by the planner. It is important
to note that establishing standby modes following
plan failure is a costly activity, as it causes us to
interrupt the ongoing planned activities and lose
important opportunities. For example, a plan fail-
ure causing us to enter standby mode during the
comet encounter would cause loss of all the en-
counter science, as there is not time to re-plan be-
fore the comet is out of sight. Such concerns mo-
tivate a strong desire for plan robustness, in which
the plans contain enough 
exibility, and the execu-
tive has the capability, to continue execution of the
plan under a wide variety of execution outcomes.
The top-level execution loop can thus be summa-

rized as follows:

1. Begin waiting for signals of plan failure. If this
occurs at any time in this sequence, abort the
currently executing plan and go to step 2.

2. Begin executing a standby plan to establish a
stable state.

3. Invoke planner to generate a new plan, using
the current state (including annotations on any
currently-executing plan) as the initial state for
planning.

4. Continue executing the current plan while wait-
ing for the new one.

5. Upon receipt of the new planner-generated plan:
Merge the new planner-generated plan into the
current plan.

6. Upon reaching a new planning goal, repeat from
step 3.

4 Planning

A principal goal of the NMRA is to enable a new
generation of spacecraft that can carry out com-
plete, nominal missions without any communica-
tion from ground. This is a great departure from



previous and current missions (such as Voyager,
Galileo or Cassini) which rely on frequent and ex-
tensive communications from ground. In tradi-
tional missions, ground operations routinely up-
links detailed command sequences to be executed
during subsequent mission phases. Such commu-
nications require costly resources such the Deep
Space Network, which makes them very expen-
sive. Uplink independence is particularly impor-
tant for missions that require fast reaction times (as
it is the case for autonomous rovers, comet landers
and other remote explorers); in this case detailed
ground-based commanding is not even feasible due
to the long round-trip communication times. Al-
though in case of loss of uplink capabilities previ-
ous spacecrafts could carry out a critical sequence
of commands stored on board before launch, these
sequences were greatly simpli�ed when compared
to the uplinked sequences and could only carry out
a small fraction of all mission goals.

Mission Manager

NMRA instead is launched with a pre-de�ned \mis-
sion pro�le". This contains the list of all nominal
goals that have to be achieved over the entire du-
ration of the mission. The detailed sequence of
commands to acheve such goals, however, is not
pre-stored but is generated on board by the plan-
ner. A special module of the planner, the Mis-
sion Manager, determines the goals that need to be
achieved in the next scheduling horizon (typically
2 weeks long), extracts them from the mission pro-
�le and combines them with the initial spacecraft
state as determined by the executive. The result
is the planning problem that once solved yields the
detailed execution commands. The mission pro-
�le is a signi�cantly more abstract representation
of the mission than the complete sequence of de-
tailed commands needed to execute it. The on-
board storage requirements for the mission pro�le,
the domainmodels, and the planning and execution
engine is signi�cantly lower than what the storage
required by all mission sequences needed in the old
approach.

Requirements for Robust Execution

The NMRA must be able to respond to unexpected
events during plan execution without having to
plan the response. Although it is sometimes nec-
essary to replan, this should not be the only op-
tion. Many situations require responses that can-
not be made quickly enough if the NMRA has to
plan them.
The executive must be able to react to events in

such a way that the rest of the plan is still valid. To

support this, the plan must be 
exible enough to
tolerate both the unexpected events and the exec-
utive's responses without breaking. This 
exibility
is achieved in two ways: �rst, by choosing an ap-
propriate level of abstraction for the activities, and
second, by generating plans in which the activities
have 
exible start and end times.
The abstraction level of the activities in the plan

must be chosen carefully. If the activities are at too
�ne a level of granularity, then the plan will impose
too many constraints on the behavior of the execu-
tive. However, if the granularity is too course, then
there may be interactions among the sub-actions
of activities that the planner cannot reason about.
In DS1, activities are abstracted to the level where
there are no interactions among their sub-activities.
This level allows the planner to resolve all of the
global interactions without getting into details that
would overconstrain the executive.
The other mechanism by which the executive

can respond to events without breaking the plan is
having activities with 
exible start and end times.
Plans in DS1 consist of temporal sequences of ac-
tivities, or tokens. Each activity has an earliest
start time, a latest start time, an earliest end time,
and latest end time. The planner uses a least com-
mitment approach, constricting the start and end
times only when absolutely necessary. Any 
exibil-
ity remaining at the end of planning is retained in
the plan. This 
exibility is used by the executive
to adjust the start and end times of activities as
needed. For example, if the engine does not start
on the �rst try, the executive can try a few more
times. To make time for these extra attempts, the
end time is moved ahead, but not beyond the latest
end time.
Changing the start or end time of an activity

may also a�ect other activities in the plan. For
example, if the spacecraft must take science data
�ve minutes after shutting down the engine, then
changing the end time of the engine firing activ-
ity will change the start time of the take science

data activity. To make the changes, the executive
must know about the temporal constraint between
the fire engine activity and the take science

data activity. The plan therefore contains all of
the temporal constraints among the activities.

Although 
exibility in the activity start and end
times typically occurs because the times are under-
constrained, 
exibility can also occur because the
duration of an activity is not determined until exe-
cution time.

The plan must be able to represent this kind
of uncertainty. There are two ways of doing this.
One is to use the existing capability for 
exible



end times. However, the planner assumes that it
can further constrain any 
exibility in the plan as
needed to make room for other activities and con-
straints. It must remember to preserve the 
exi-
bility in the end times{the planner cannot decide
to end the warm up early if it needs the time for
something else. This enhancement has not yet been
implemented for DS1.
A second approach is to �x the end time of the

activity to the latest end time, and change the se-
mantics of the activity from engine warming up to
engine warming up, and possibly started. It
is then up to the executive to determine whether
warming up or started is the correct state at any
time during the activity based on execution time
data. This approach requires no change to either
the planning or execution engines, and is the ap-
proach currently being used by NMRA.

5 Execution

From the point of view of the NMRA executive,
a plan is a set of timelines, each of which consists
of a linear sequence of tokens. A token consists of
a start and end window, a set of pre- and post-
conditions, and a token type.
The start and end windows are intervals in abso-

lute time during which that token must start and
end. The pre- and post-constraints describe the de-
pendencies of the start and end of the token with
respect to the starts and ends of other tokens on
other timelines. The token type de�nes the activ-
ity which should be taking place during the time
period covered by the token.
There are three di�erent types of pre- and post-

constraints, which we will refer to here as before,
after, and meets constraints. (The actual nomen-
clature and representation used is slightly di�er-
ent.) The semantics of these constraints is fairly
straightforward. A before/after constraint speci-
�es that the start (or end) of a token must come
before/after the start (or end) of another token.
The amount of time that may elapse between these
two related events is speci�ed as an interval. A
meets-constraint speci�es that the start (or end) of
a token must coincide with the start (or end) of
another token. (This is actually represented in the
plan as a before- or after-constraint with an allow-
able elapsed time of zero.)

Issues

Plan execution would be relatively straightforward
were it not for the fact that di�erent token types
have di�erent execution semantics. In particular,
there are di�erent ways of determining whether or
not a particular activity has ended or not. Some

activities are brought to an end by the physics of
the environment or the control system (e.g. turns)
while others are brought to an end simply by meet-
ing all its internal plan constraints (e.g. the periods
of constant-attitude pointing between turns).
The situation is further complicated by the fact

that a naive operationalization of these constraints
leads to deadlock. Consider a constant-pointing to-
ken A followed by a turn token B. Token A (wait-
ing for the turn) should end whenever token B (the
turn) is eligible to start. However, B is constrained
by the planner to follow A, and so B is not eligible
to start until A ends. Thus, A can never end, and
B can never start.
Another issue is that some tokens don't achieve

the conditions that they are intended to achieve un-
til some time after they have started. For example,
consider a timeline for a device containing a token A
of type DEVICE-OFF followed by token B of type
DEVICE-ON. The intent here is that the executive
should turn the device on at the junction between
A and B, but this cannot be done instantaneously.
Thus, a token on another timeline constrained to
start after B starts on the assumption that the de-
vice will be on may fail because the device may not
in fact be turned on until some time after B starts.
One possible solution to this problem is to change

the planner model so that it generates a plan that
includes an intermediate token of type DEVICE-
TURNING-ON, but this can signi�cantly increase
the size of the planner's search space, and hence
the time and resources required to generate a plan.

Our solution

Our current solution to this problem (which we
have not yet implemented as of this writing) is to
separate the execution of a token into three stages,
a startup stage, a steady-state stage, and an end-
ing stage. The startup stage performs actions to
achieve the conditions that the planner intends the
token to represent. The steady-state stage monitors
and maintains these conditions (or signals a fail-
ure if the conditions cannot be maintained). The
ending stage allows the token to perform cleanup
actions before releasing control to the next token
on the timeline. These stages are thus referred
to as the achieve-part, the maintain-part, and the
cleanup-part. Most tokens will have null actions in
one or more of these three parts.
This leaves two issues to be resolved. First, how

to implement the various tokens in this framework,
and second, how token synchronization is actually
handled. The �rst issue can only be handled on a
token-by-token basis. The second is general across
all tokens. The algorithm for executing a token in



this three-phase framework is as follows:

1. Wait for the beginning of the token's start win-
dow.

2. In parallel

(a) wait for token's pre-constraints to be true, and

(b) check that the end of the start window has not
passed. If it has, signal a failure.

3. Signal that the token has started.

4. Execute the achieve-portion of the token.

5. Spawn the maintain-portion of the token as a
parallel task.

6. Wait for the start of the token's end window.

7. Wait for the token's post-conditions to be true.

8. Wait for the pre-conditions of the next token to
be true, except those that refer to the end of this
token.

9. Stop the maintain thread spawned in step 5, and
execute the cleanup-portion of the token

10. Check that the end of the end window has not
passed. If it has, signal a failure. Otherwise,
signal that this token has ended.

This algorithm allows all the token types we have
implemented so far to be executed within a uniform
framework.

6 Examples

In the course of executing a plan, the executive
needs to enforce many constraints among the com-
ponents of the spacecraft. Some of these constraints
are modelled by the planner and are enforced by the
compatibility relationships among tokens within
the plan. For example, the attitude control system
(ACS) needs to maintain constant pointing during
the �ring of the ion propulsion system (IPS). This
compatibility is expressed within the plan by a con-
tained by relation associated to the IPS token 1, as
illustrated by the plan fragments below:

(PLAN-VALUE :NAME VAL-4181
:STATE-VARIABLE (IPS IPS_SV)
:TOKEN-TYPE ((IPS_THRUSTING

(IPS_TARGET_1 10)))
:START-TIME (317 676) :END-TIME (317 676)
:PRE-CONSTRAINTS
(((CONTAINED_BY 0 5000000 0 5000000)
VAL-4471 ((CONSTANT_POINTING_ON_SUN

(IPS_TARGET_1))))...)
:DURATION (1 5000000))

1The ACS token contains an inverse contains rela-
tion relative to the IPS token

Other essential constraints are not modelled by
the planner and are known only to the executive.
For example, in addition to maintaining constant
pointing during IPS thrusting, the executive must
change the ACS control mode to thrust vector con-
trol (TVC) once thrusting has been established.
The transition between ACS control modes is mod-
elled entirely within the executive.
The code fragment below illustrates the meth-

ods for achieving IPS thrusting at a desired level.
Our code is written in ESL, the Execution Support
Language (Gat 1996) being developed as the kernel
for the NMRA Executive.
Note that there are multiple methods depending

on the current state of execution. If the IPS is in
standby mode, the ACS is commanded to change
control modes only after the desired IPS thrust level
has been con�rmed.

(to-achieve (IPS-THRUSTING ips level)
((ips-is-in-standby-state-p ips)
(sequence (achieve (power-on? 'ega_a))
(command-with-confirmation
(send_ips_set_thrust_level level))

(command-with-confirmation
(send_acs_change_control_mode
:acs_tvc_mode))))

((ips-in-thrusting-state-p ips)
(command-with-confirmation
(send_ips_change_thrust_level level)))

(t (fail :ips-achieve-thrusting)))

The behavior of the spacecraft and its compo-
nents are never fully predictable. Because of this
uncertainty, plans may contain tokens that are exe-
cuted only under certain conditions. For example, a
plan may specify the total amount of IPS thrusting
to be achieved, with this thrusting divided among
several IPS Thrusting tokens. In some cases, the
desired thrusting will be accumulated before the
last IPS Thrusting token has begun, and the execu-
tive should maintain IPS in a standby con�guration
rather than commanding it to thrust.

(defun ips-thrust-token-handler
(ips token thrust-level)

(with-cleanup-procedure
(cond
((ips-in-standby-state-p ips) 'all-ok)
((ips-in-thrusting-state-p

ips thrust-level)
(achieve (ips-standby ips)))

(t (sequence
(ips-clnup/dclr-ips-unavail ips)

(fail :ips-unavailable))))
(with-recovery-procedures
((:ips-not-in-thrusting-state
:retries *ips-retry-count*
(reconfigure-for-token-named token)
(retry)))



;; This is a a conditional token.
(unless (db-query '(ips-thrust-achvd))
(with-guardian
(monitor
(not (ips-in-thrusting-state-p

ips thrust-level)))
(fail :ips-not-in-thrusting-state)
(sequence
(achieve (ips-thrusting ips))
(memory-wait
'(ips-thrust-achvd))))))

(achieve-and-maintain
(ips-is-in-standby-state-p ips)))

Note that this code for the IPS-thrusting token
represents the state of the DS-1 executive prior to
a transition to the uniform token style described
above. Nonetheless, it illustrates these principles,
consisting of an achieve-part, a maintain-part, and
a cleanup-part. After IPS thrusting is achieved, the
monitor clause acts to maintain the IPS thrusting
state. Finally, at the end of token execution, a
cleanup procedure is invoked.
This code fragment illustrates other important

aspects of plan execution. Execution must be ro-
bust in the face of hardware faults. For example,
communication between the IPS and its remote ter-
minal on the bus may fail temporarily during IPS
thrusting. In this case, the monitor ensuring that
the IPS is in thrusting state will signal a failure.
Rather than failing the entire plan, the executive
will attempt a recon�guration, in this case by re-
setting the remote terminal.2 If this recon�guration
succeeds, IPS thrusting can continue and the plan
can be completed successfully.
In cases where the plan fails, it may be necessary

to clean up after activities that are currently exe-
cuting. If the plan fails during IPS thrusting, the
ACS must be commanded out of TVC control mode
and the IPS must be turned o�. If the plan fails
because the IPS has failed and cannot be success-
fully recon�gured, the executive declares the IPS
unavailable and communicates this degraded capac-
ity back to the planner for future planning.

7 Related Work

To the best of our knowledge, NMRA is the only
integrated closed-loop system that generates and
executes concurrent temporal plans in the presence
of resource constraints.

2Our recon�gurations can draw on knowledge coded
in the executive itself, or can query for assistance from
an external con�guration expert. In NMRA, the model-
based Livingstone system (Williams and Nayak 1996)
serves as such an expert.

Bresina et al. (1996) describe a temporal planner
and executive for autonomous telescope domain.
Their approach uses a single action representation
whereas ours uses an abstract planning language,
but their plan representation shares with ours 
ex-
ibility and uncertainty about start and �nish times
of activities. However, their approach is currently
restricted to single resource domains with no con-
currency.

Currie and Tate (1991) describe the O-PLAN2
planning system, which when combined with a tem-
poral scheduler can produce rich temporal plans.
They have applied this system to a number of real-
world problems including the military logistics do-
main. While the authors have developed an exe-
cution model for the O-PLAN plan representation
(Currie and Tate 1991), the plans themselves are
invoked and executed by humans, not in a closed-
loop fashion. As such, their theory does not ad-
dress the issue of generating current state input to
the planner based on dynamic execution context.

By contrast, the Cypress system (Wilkins et al.
1995) and the 3T system (Bonasso et al. 1996) do
address the closed-loop integration of planning and
execution in the context of concurrency, although
neither of these systems deals with temporal plans.
It is interesting to compare how these systems dif-
fer from ours concerning the generation of execu-
tion context for the planner and the integration
of new planning information back into execution.
Cypress shares the same action formalism, called
acts (Wilkins and Myers 1995), between planning
and execution. This enables the planner to watch
over execution and simulate the results forward, as
discussed in section 3. The planner can detect prob-
lems in advance and send back a detailed plan re-
�nement, and the executive can replace unexecuted
portions of its current plan with new portions and
continue running uninterrupted.

In 3T, the planner maintains such tight control
over execution that it does not even send the full
plan it has developed. Instead, it sends directives
to the executive one at a time, and the executive
then responds to each directive in turn. This pro-
vides an interesting solution to the problem of keep-
ing the planner informed about execution and also
to the problem of integrating new planning infor-
mation into the execution context. However, this
approach is problematic in our domain as it places
severe time constraints on the planner so that it can
decide what to do before the executive runs out of
activities, and it requires the computational and in-
formational resources to be available for planning
on a continuous basis. This is a luxury we could not
a�ord on a spacecraft, as discussed in section 3.



Other systems integrating planning and execu-
tion in real-world control systems include Guardian
(Hayes-Roth 1995), SOAR (Tambe et al. 1995), At-
lantis (Gat 1992) and TCA (Simmons 1990). These
systems invoke planning as a means to answer spe-
ci�c questions during execution (like whether a par-
ticular treatment would take e�ect in time to heal
the patient, which evasive maneuver will counter
the opponents current attack plan, and which path
to take to get to a particular room). This use of
planning contrasts with our approach, in which the
planner coordinates the global activity in the sys-
tem. The local approach has the advantage of mak-
ing use of special-purpose planners which can be
built to answer narrow questions, but our global
approach has the advantage of ensuring that the
di�erent activities undertaken at execution will not
interact harmfully. It is not clear how the local ap-
proaches can be extended to provide similar guar-
antees.

8 Conclusion

A growing body of work is addressing issues of ro-
bust planning and execution in the face of failures
and uncertainty. The Lockheed Underwater Vehi-
cle (Ogasawara 1991) uses decision-theoretic plan-
ning and execution to select courses of action which
maximize utility. CIRCA (Musliner et al. 1993)
considers a set of states, actions, and critical fail-
ures to be avoided. It then inserts a set of sense-act
transitions into a real-time controller to ensure that
the controller will never enter the critical failure
states. Cassandra (Pryor 1996a), Buridan (Draper
et al. 1994), OPlan-2 (Currie and Tate 1991) and
JIC (Drummond et al. 1994) all consider actions
with uncertain outcomes and produce plans that
enable execution-time recovery without having to
take time out for replanning.
We are currently working on extending our plan-

ning approach to support such capabilities in the
context of concurrent temporal plans. Our present
levels of robustness are achieved using the comple-
mentary approach of 
exible, abstract, and conser-
vative plans which can be exploited by a smart ex-
ecutive.
A �nal distinction between NMRA and most

other planning and execution systems is that our
planner actually plans how and when it will plan
for the next horizon. That is, it inserts a \plan next
horizon" activity into the plan and plans other sup-
porting activities around this goal. Such activities
include information-gathering activities which will
be necessary before another plan can be built. The
executive then achieves these activities to enable
this form of planning over multiple horizons. We

believe this is a necessary capability of extended
agency, and one which will become of growing con-
cern as we design autonomous agents to achieve
goals unassisted over years or decades of activity.

9 Acknowledgements
We acknowledge the contributions of other mem-
bers of the DS1 Remote Agent team: Steve Chien,
Mike Frank, Chuck Fry, Ed Gamble, Othar Hans-
son, Chris Plaunt, Sunil Mohan, Kanna Rajan,
Gregg Rabideau, David Yan. Doug Bernard, Sandy
Krasner, Scott Sawyer, Mike Wagner have in
u-
enced the design of the planning and execution ar-
chitecture.

References
Bonasso, R. P.; Kortenkamp, D.; Miller, D.; and
Slack, M. 1996. Experiences with an architecture
for intelligent, reactive agents. JETAI. to appear.

Bresina, John; Edgington, Will; Swanson, Keith;
and Drummond, Mark 1996. Operational closed-
loop obesrvation scheduling and execution. In
Pryor (Pryor 1996b).

Currie, K. and Tate, A. 1991. O-plan: the
open planning architecture. Arti�cial Intelligence
52(1):49{86.

Draper, D.; Hanks, S.; and Weld, D. 1994. Prob-
abilistic planning with information gathering and
contingent execution. In Proceedings of AIPS94.
AAAI Press. 31{36.

Drummond, M.; Bresina, J.; and Swanson, K.
1994. Just-in-case scheduling. In Proceedings of
the Twelfth National Conference on Arti�cial In-
telligence, Cambridge, Mass. AAAI, AAAI/MIT
Press. 1098{1104.

Gat, Erann 1992. Integrating planning and re-
acting in a heterogeneous asynchronous architec-
ture for controlling real-world mobile robots. In
Proceedings of the Tenth National Conference on
Arti�cial Intelligence, Cambridge, Mass. AAAI,
AAAI/MIT Press.

Gat, Erann 1996. ESL: A language for supporting
robust plan execution in embedded autonomous
agents. In Pryor (Pryor 1996b).

Hayes-Roth, Barbara 1995. An architecture for
adaptive intelligent systems. Arti�cial Intelligence
72.

Levinson, Richard 1994. A general programming
language for uni�ed planning and control. Arti-
�cial Intelligence. Special Issue on Planning and
Scheduling.

Musliner, David; Durfee, Ed; and Shin, Kang
1993. Circa: A cooperative, intelligent, real-time



control architecture. IEEE Transactions on Sys-
tems, Man, and Cybernetics 23(6).

Ogasawara, Gary H. 1991. A distributed, decision-
theoretic control system for a mobile robot. ACM
SIGART Bulletin 2(4):140{145.

Pell, Barney; Bernard, Douglas E.; Chien,
Steve A.; Gat, Erann; Muscettola, Nicola; Nayak,
P. Pandurang; Wagner, Michael D.; and Williams,
Brian C. 1996. A remote agent prototype for
spacecraft autonomy. In Proceedings of the SPIE
Conference on Optical Science, Engineering, and
Instrumentation.

Pryor, Louise 1996a. Opportunity recognition in
complex environments. In Proceedings of the Thir-
teenth National Conference on Arti�cial Intelli-
gence, Portland. AAAI, AAAI Press/MIT Press.
1147{1152.

Pryor, Louise, editor 1996b. Proceedings of the
AAAI Fall Symposium on Plan Execution. AAAI
Press.

Simmons, Reid 1990. An architecture for coor-
dinating planning, sensing, and action. In Pro-
ceedings DARPA Workshop on Innovative Ap-
proaches to Planning, Scheduling and Control.
Morgan Kaufmann: San Mateo, CA. 292{297.

Tambe, M.; Johnson, W. Lewis; Jones, R. M.;
Koss, F.; Laird, J. E.; Rosenbloom, Paul S.;
and Schwamb, K. 1995. Intelligent agents for in-
teractive simulation environments. AI Magazine
16(1):15{39.

Wilkins, David E. and Myers, Karen L. 1995. A
common knowledge representation for plan gener-
ation and reactive execution. Journal of Logic and
Computation.

Wilkins, D. E.; Myers, K. L.; Lowrance, J. D.;
and Wesley, L. P. 1995. Planning and reacting in
uncertain and dynamic environments. Journal of
Experimental and Theoretical AI 7(1):197{227.

Williams, Brian C. and Nayak, P. Pandurang
1996. A model-based approach to reactive self-
con�guring systems. In Proceedings of AAAI96.
971{978.


